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wider application in comparison with traditional
Abstract tools based on direct methods.
Krylov-subspace iterative methods with pre-
conditioning are the most promising approach
for new HB simulators due to their good conver-
gence properties. This class of methods has been
studied extensively [10]. The present paper
focuses on two computational procedures: the
GMRES-method [11], based on an Arnoldi pro-
cess, and the QMR-method [12], based on a
Lanczos process. The new RF simulation tools
are primarily based on these methods [6-9], and
each of the methods has its own numerical
advantages and disadvantages.
_ Some results of comparison of the GMRES
Introduction and QMR algorithms in a HB simulator are pre-
Recent advances in techniques of steady-stateented here. We also concentrate on the prob-
simulation of RF circuits are based on the use oflems of the algorithmic connection between the
iterative methods for solving large linear sys-  nonlinear and linear solvers. We show that it is
tems[1]. In particular, harmonic balance (HB) profitable to set the error tolerance for the linear
[2-4] as a method of numerical steady-state analsolver depending on residual norm of nonlinear
ysis in frequency domain is well suited for equations.
e_xploitation of iterative techniques. Thg dimt_an- lterative linear solvers
sion of solved HB problems grows rapidly with | b techniaues are well suited to
increasing circuit size and number of tones and Krylov subspace 9
. : : . . solve large linearized HB problems,
harmonics. Increasing the permitted dimension
by the use of iterative methods at the linear level Ax = Db 1)
allows simulation of circuits with stronger non- where A is alxN matrixy = NegX (2xN¢=1)

linearities and extends the opportunity for multi- _ js the number of circuit equations, and ~ is
eq '

tone circuits analysis. As a result such : :
: , the number of frequencies. The following advan-
computational tools [5-6] have the potential for a d g

Harmonic balance (HB) is a steady-state sim-
ulation technique of primary interest for RF and
microwave circuits. Krylov subspace methods
promise efficient solution of the large linear sys-
tems that arise in HB simulators. This paper
deals with an experimental investigation of
GMRES and QMR, two leading Krylov sub-
space methods as applied to the HB problem.
The problem of coordinating the linear solver’s
accuracy with the error at the nonlinear level is
also discussed.
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tages of Krylov subspace methods for large sys-

tems are noteworthy:
- numerical stability due to using orthogonal-
ization techniques;
- they can be matrix implicit, i.e. the matrix A
need not be formed explicitly;
- accuracy control during processing.
Krylov subspace algorithms consist of two
stages:
- the construction of suitable basis vectors for
the Krylov subspaces;

- the choice of the iterates

Two alternative computational scheme,
GMRES and QMR, have been successfully
exploited in RF simulation [5-9]. The GMRES
algorithm uses an Arnoldi process to construct
an orthonormal basis [10,11]. The principle of

the Arnoldi approach is to construct an orthonor-

mal basis
V, = (Vi Vg, .., V)
and sequential computation of vectar , 4
under condition
Vi 18V Vg e Vq)
As aresulinx1 matri¥/; with Arnoldi vec-

tors and(l +1)xI Hessenberg forr are con-

structed. The large storage required for these
matrices is the main limitation of the GMRES-
technique.

An alternative approach to constructing a
suitable basis of vectors for the Krylov subspace
is the nonsymmetrical Lanczos process [10].

ing well known drawbacks have been avoided in
the nonsymmetric Lanczos process in recent
developments [10]:

- the need of adjoint matrix-vector multiplica-
tions;

- the possibility of breakdowns or near break-
downs;

- its irregular convergence.

In particular, the developed QMR technique
[12] is directed to solve nonsymmetrical prob-
lems and avoids the above mentioned draw-
backs. QMR was successfully exploited in
circuit simulation and in particular in HB simu-
lators [5,6].

Results

Both the QMR and the GMRES algorithms
can achieve higher simulation speed compared
to direct methods. The choice of tools with fast
algorithms to solve linear problems plays a sig-
nificant role for HB simulators due to high com-
putational complexity of this intermediate stage
in computing the solution of nonlinear problem.
We performed a series of experiments to com-
pare the efficiency of the two methods for HB
analysis.

Table 1 contains a brief description of the test
problems. We used twenty harmonics for circuits
1 -5, and 15 harmonics for circuit 6. Two main
dependencies were investigated with numerical
experiments on these test problems:

Table 1: Test Circuits

This process can be characterized by short recur-

rences and significantly lower storage require-

ments in comparison with the Arnoldi process.

Even though each iteration requires two matrix-
vector multiplies, when the number of itera-

tions is large, the nonsymmetric Lanczos proces

is more economical due to the reduction of A to

tridiagonal form. New basis vectors, ;  are
obtained from orthogonality conditions only to

nearest vectors,v; , 10(vj, v;_;) . The follow-

Circuit # nodes dimension
1. Power supply 6 246
2. Amplifier 8 328
5 3. Class C amplifier 12 492
4. Differential pair 12 492
5. Opamp 29 1189
6. Five pole active filter 139 4310
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CPU time dependence on input signal amplitude
and CPU time dependence on the error tolerance
specified for the linear solver. The computations
were performed by both GMRES and QMR
algorithms and also by direct method of Gauss-
ian elimination to estimate acceleration of itera-
tive technigues for these examples. The results
are also shown in Fig.1 for small amplitude (Fig.
1a) as well as for large amplitudes (Fig. 1b).
These results demonstrate the advantages of
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. Figure 2. Comparison of GMRES and QMR CPU
Circuit time for circuit 5 driven with a (a) small
amplitude and (b) large amplitude input.
15.0 - b for the circuits. The corresponding curves for
o - [ | GMRES (b) circuit 5 are presented in Fig. 2 f Here eps is
= " []owr ] specified as a relative residual norm:
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Circuit The cost curve for the GMRES method are

located lower than that of the QMR method. The
same results were obtained for the all circuits we
considered. It is also important to notice that
high computational efficiency corresponds to
low average specified error tolerance.

Figure 1. Comparison of GMRES and QMR CPU
time relative to direct Gaussian elimination for
(a) small and (b) large amplitude input and eps =
le-6.
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The superior performance of GMRES is solutions generates new opportunities for reduc-
because the required sequence of Arnoldi vec- ing computational efforts for such large prob-
tors is relatively short in the considered prob- lems as HB analysis of RF circuits.
lems. So, the above mentioned limitations of
GMRES are not too essential while the GMRES
technique exploits full information to construct
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