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Abstract
Harmonic balance (HB) is a steady-state sim-

ulation technique of primary interest for RF and
microwave circuits. Krylov subspace methods
promise efficient solution of the large linear sys-
tems that arise in HB simulators. This paper
deals with an experimental investigation of
GMRES and QMR, two leading Krylov sub-
space methods as applied to the HB problem.
The problem of coordinating the linear solver’s
accuracy with the error at the nonlinear level is
also discussed.

Introduction
Recent advances in techniques of steady-state

simulation of RF circuits are based on the use of
iterative methods for solving large linear sys-
tems[1]. In particular, harmonic balance (HB)
[2-4] as a method of numerical steady-state anal-
ysis in frequency domain is well suited for
exploitation of iterative techniques. The dimen-
sion of solved HB problems grows rapidly with
increasing circuit size and number of tones and
harmonics. Increasing the permitted dimension
by the use of iterative methods at the linear level
allows simulation of circuits with stronger non-
linearities and extends the opportunity for multi-
tone circuits analysis. As a result such
computational tools [5-6] have the potential for a

wider application in comparison with traditional
tools based on direct methods.

Krylov-subspace iterative methods with pre-
conditioning are the most promising approach
for new HB simulators due to their good conver-
gence properties. This class of methods has been
studied extensively [10]. The present paper
focuses on two computational procedures: the
GMRES-method [11], based on an Arnoldi pro-
cess, and the QMR-method [12], based on a
Lanczos process. The new RF simulation tools
are primarily based on these methods [6-9], and
each of the methods has its own numerical
advantages and disadvantages.

Some results of comparison of the GMRES
and QMR algorithms in a HB simulator are pre-
sented here. We also concentrate on the prob-
lems of the algorithmic connection between the
nonlinear and linear solvers. We show that it is
profitable to set the error tolerance for the linear
solver depending on residual norm of nonlinear
equations.

Iterative linear solvers
Krylov subspace techniques are well suited to

solve large linearized HB problems,

                                        (1)

where A is a  matrix, ,
 is the number of circuit equations, and  is

the number of frequencies. The following advan-
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tages of Krylov subspace methods for large sys-
tems are noteworthy:

- numerical stability due to using orthogonal-
ization techniques;

- they can be matrix implicit, i.e. the matrix A
need not be formed explicitly;

- accuracy control during processing.
Krylov subspace algorithms consist of two
stages:

- the construction of suitable basis vectors for
the Krylov subspaces;

- the choice of the iterates .

Two alternative computational scheme,
GMRES and QMR, have been successfully
exploited in RF simulation [5-9]. The GMRES
algorithm uses an Arnoldi process to construct
an orthonormal basis [10,11]. The principle of
the Arnoldi approach is to construct an orthonor-
mal basis

and sequential computation of vector

under condition

As a result  matrix  with  Arnoldi vec-

tors and  Hessenberg form  are con-

structed. The large storage required for these
matrices is the main limitation of the GMRES-
technique.

An alternative approach to constructing a
suitable basis of vectors for the Krylov subspace
is the nonsymmetrical Lanczos process [10].
This process can be characterized by short recur-
rences and significantly lower storage require-
ments in comparison with the Arnoldi process.
Even though each iteration requires two matrix-
vector multiplies, when the number of itera-
tions is large, the nonsymmetric Lanczos process
is more economical due to the reduction of A to

tridiagonal form. New basis vectors  are

obtained from orthogonality conditions only to

nearest vectors, . The follow-
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ing well known drawbacks have been avoided in
the nonsymmetric Lanczos process in recent
developments [10]:

- the need of adjoint matrix-vector multiplica-
tions;

- the possibility of breakdowns or near break-
downs;

- its irregular convergence.
In particular, the developed QMR technique

[12] is directed to solve nonsymmetrical prob-
lems and avoids the above mentioned draw-
backs. QMR was successfully exploited in
circuit simulation and in particular in HB simu-
lators [5,6].

Results
Both the QMR and the GMRES algorithms

can achieve higher simulation speed compared
to direct methods. The choice of tools with fast
algorithms to solve linear problems plays a sig-
nificant role for HB simulators due to high com-
putational complexity of this intermediate stage
in computing the solution of nonlinear problem.
We performed a series of experiments to com-
pare the efficiency of the two methods for HB
analysis.

Table 1 contains a brief description of the test
problems. We used twenty harmonics for circuits
1 - 5, and 15 harmonics for circuit 6. Two main
dependencies were investigated with numerical
experiments on these test problems:

Table 1: Test Circuits

Circuit # nodes dimension

1. Power supply 6 246

2. Amplifier 8 328

3. Class C amplifier 12 492

4. Differential pair 12 492

5. Opamp 29 1189

6. Five pole active filter 139 4310
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CPU time dependence on input signal amplitude
and CPU time dependence on the error tolerance
specified for the linear solver. The computations
were performed by both GMRES and QMR
algorithms and also by direct method of Gauss-
ian elimination to estimate acceleration of itera-
tive techniques for these examples. The results
are also shown in Fig.1 for small amplitude (Fig.
1a) as well as for large amplitudes (Fig. 1b).

These results demonstrate the advantages of
GMRES techniques. Moreover the time spent
versus growth of accuracy (1/eps) were obtained

Figure 1. Comparison of GMRES and QMR CPU
time relative to direct Gaussian elimination for
(a) small and (b) large amplitude input and eps =
1e-6.
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Figure 2. Comparison of GMRES and QMR CPU
time for circuit 5 driven with a (a) small
amplitude and (b) large amplitude input.

for the circuits. The corresponding curves for
circuit 5 are presented in Fig. 2 f Here eps is
specified as a relative residual norm:

(2)

where  and .

The cost curve for the GMRES method are
located lower than that of the QMR method. The
same results were obtained for the all circuits we
considered. It is also important to notice that
high computational efficiency corresponds to
low average specified error tolerance.
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The superior performance of GMRES is
because the required sequence of Arnoldi vec-
tors is relatively short in the considered prob-
lems. So, the above mentioned limitations of
GMRES are not too essential while the GMRES
technique exploits full information to construct
the basis.

Error tolerance variation
Additional acceleration can be achieved in

some cases by adapting the error tolerance of the
linear solution to the current error of nonlinear
iterations. The main idea is to reduce the time
spent for the initial iterations that are far from
the solution by specifying low accuracy for the
linear solver and establishing high accuracy only
for the final nonlinear iterations.

Several ways to coordinate errors at the linear
and nonlinear levels can be pursued. The sim-
plest one is to define a relative residual norm (2)
as a stopping criterion for linear iterations. In our
numerical experiments the following form of
error tolerance was used as stopping criterion:

            (3)

Here  is an experimental coefficient, n is
the nonlinear iteration number.

Numerical experiments using (3) resulted in a
simulation speed up of 25% and 50% for prob-
lems 1 and 3, respectively, when compared to
using a constant average value of error tolerance.

Conclusion
a) The GMRES algorithm is preferred in

comparison to QMR from the viewpoint of prac-
tical application in HB.

b) The average specified relative error toler-
ance for linear problems must not establish high
accuracy; in practice a value in the range
[0.01,0.5] provides the best efficiency for the
considered test examples.

c) Implementation of an accuracy coordina-
tion principle between the linear and non-linear

δ γ
bn

2

bn 1–
----------------=

Axl bn– δ<
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solutions generates new opportunities for reduc-
ing computational efforts for such large prob-
lems as HB analysis of RF circuits.
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